Fourier transform-ion cyclotron resonance-mass spectrometer: Difference between revisions

From Mass Spec Terms
No edit summary
 
No edit summary
Line 3: Line 3:
A high-frequency mass spectrometer in which the cyclotron motion of ions, having different mass/charge ratios, in a constant magnetic field, is excited essentially simultaneously and coherently by a pulse of a radio-frequency electric field applied perpendicularly to the magnetic field. The excited cyclotron motion of the ions is subsequently detected on receiver plates as a time domain signal that contains all the cyclotron frequencies excited. Fourier transformation of the time domain signal results in the frequency domain FT-ICR signal which, on the basis of the inverse proportionality between frequency and mass/charge ratio, can be converted to a mass spectrum. See also ion cyclotron resonance (ICR) mass spectrometer.
A high-frequency mass spectrometer in which the cyclotron motion of ions, having different mass/charge ratios, in a constant magnetic field, is excited essentially simultaneously and coherently by a pulse of a radio-frequency electric field applied perpendicularly to the magnetic field. The excited cyclotron motion of the ions is subsequently detected on receiver plates as a time domain signal that contains all the cyclotron frequencies excited. Fourier transformation of the time domain signal results in the frequency domain FT-ICR signal which, on the basis of the inverse proportionality between frequency and mass/charge ratio, can be converted to a mass spectrum. See also ion cyclotron resonance (ICR) mass spectrometer.


== Proposed New Entry ==
== External Links ==


(there is no new entry yet)
[http://www.rsc.org/CFmuscat/intermediate_abstract.cfm?FURL=/ej/AN/2005/b403880k.PDF Principles of Fourier transform ion cyclotron resonance mass spectrometry and its application in structural biology]

Revision as of 13:37, 10 January 2005

Orange Book Entry

A high-frequency mass spectrometer in which the cyclotron motion of ions, having different mass/charge ratios, in a constant magnetic field, is excited essentially simultaneously and coherently by a pulse of a radio-frequency electric field applied perpendicularly to the magnetic field. The excited cyclotron motion of the ions is subsequently detected on receiver plates as a time domain signal that contains all the cyclotron frequencies excited. Fourier transformation of the time domain signal results in the frequency domain FT-ICR signal which, on the basis of the inverse proportionality between frequency and mass/charge ratio, can be converted to a mass spectrum. See also ion cyclotron resonance (ICR) mass spectrometer.

External Links

Principles of Fourier transform ion cyclotron resonance mass spectrometry and its application in structural biology